Distributions of Maximum Likelihood Estimators and Model Comparisons
نویسنده
چکیده
Experimental data need to be assessed for purposes of model identification, estimation of model parameters and consequences of misspecified model fits. Here the first and third factors are considered via analytic formulations for the distribution of the maximum likelihood estimates. When estimating this distribution with statistics, it is a tradition to invert the roles of population quantities and quantities that have been estimated from the observed sample. If the model is known, simulations, normal approximations and p*-formula methods can be used. However, exact analytic methods for describing the estimator density are recommended. One of the methods (TED) can be used when the data generating model differs from the estimation model, which allows for the estimation of common parameters across a suite of candidate models. Information criteria such as AIC can be used to pick a winning model. AIC is however approximate and generally only asymptotically correct. For fairly simple models, where expressions remain tractable, the exact estimator density under TED allows for comparisons between models. This is illustrated via a novel information criterion. Three linear models are compared and fitted to econometric data on patent filings.
منابع مشابه
Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملOn Bivariate Generalized Exponential-Power Series Class of Distributions
In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...
متن کاملThe Weighted Exponentiated Family of Distributions: Properties, Applications and Characterizations
In this paper a new method of introducing an additional parameter to a continuous distribution is proposed, which leads to a new class of distributions, called the weighted exponentiated family. A special sub-model is discussed. General expressions for some of the mathematical properties of this class such as the moments, quantile function, generating function and order statistics are derived;...
متن کاملMixture of Normal Mean-Variance of Lindley Distributions
‎Abstract: In this paper, a new mixture modelling using the normal mean-variance mixture of Lindley (NMVL) distribution has been considered. The proposed model is heavy-tailed and multimodal and can be used in dealing with asymmetric data in various theoretic and applied problems. We present a feasible computationally analytical EM algorithm for computing the maximum likelihood estimates. T...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملAnalysis of Hybrid Censored Data from the Lognormal Distribution
The mixture of Type I and Type II censoring schemes, called the hybrid censoring. This article presents the statistical inferences on lognormal parameters when the data are hybrid censored. We obtain the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used ...
متن کامل